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Abstract
There is a growing belief that the mode coupling theory is the proper
microscopic theory for the dynamics of the undercooled liquid above and around
a critical temperature Tc. In addition, there is some evidence that the system
leaves the saddle points of the energy landscape to settle in the valleys at this
critical temperature. Finally, there is a microscopic theory for the entropy well
below Tc (i.e. close to the calorimetric glass transition Tg), of Mézard and Parisi,
which allows one to calculate the Kauzmann temperature from the atomic pair
potentials.

Description of the dynamics of the frozen glass phase is at present limited
to phenomenological models. In the spirit of the energy landscape concept, one
considers an ensemble of independent asymmetric double-well potentials with
a wide distribution of barrier heights and asymmetries (the ADWP or Gilroy–
Phillips model). The model gives an excellent description of the relaxation
of glasses up to about Tg/4. Above this temperature, the interaction between
different relaxation centres begins to play a role. In a mean-field treatment, the
interaction reduces the number of relaxation centres needed to bring the shear
modulus down to zero by a factor of three.

1. Introduction

In the author’s view, our present foggy picture of the glass transition begins to show some
cornerstones of a future solid theoretical building, namely the energy landscape concept
(Goldstein 1968, Johari and Goldstein 1970, 1971, Stillinger 1995), the mode coupling theory
(Bengtzelius et al 1984, Götze and Sjögren 1992) together with the realization (Bengtzelius
et al 1984, Angell 1988) that the critical temperature of this theory marks the onset of thermally
activated motion between the minima of the energy landscape, and, finally, the calculation of
the Kauzmann temperature from the interatomic potentials (Mézard and Parisi 1996, 1999).
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These theories explain, at least in principle, the dynamics above and around Tc as well as the
thermodynamics near to the calorimetric glass transition Tg , leaving only the fragility (Angell
1988, 1995, Böhmer et al 1993) without a solid theoretical foundation.

The present paper expands this view in a bit more detail in the next two sections. Section 4
addresses the relaxation in glasses at temperatures well below Tg in terms of thermally activated
jumps in an ensemble of independent asymmetric double-well potentials (the ADWP (Pollak
and Pike 1972) or Gilroy–Phillips model (Gilroy and Phillips 1981)). Section 5 considers
the effect of the interaction between different relaxation centres, which is shown to become
dominant at the glass transition. Section 6 compares the prediction of a mean-field treatment to
experimental data on the breakdown of the shear modulus. Conclusions are given in section 7.

2. Tc: the onset of thermally activated motion

The mode coupling theory of the glass transition (Götze and Sjögren 1992) does not require
the concept of the energy landscape. In fact, its most impressive experimental proof was found
for colloids (Pusey and van Megen 1986, van Megen and Underwood 1994), which do not
have an energy landscape.

On the other hand, the dynamics of the undercooled liquid at lower temperatures is
dominated by thermally activated hopping between different valleys of the energy landscape.
The conjecture (Bengtzelius et al 1984, Angell 1988) of an onset of this thermally activated
motion at the critical temperature Tc of the mode coupling theory has found more and more
support from numerical simulations of model glass formers (Schrøder et al 2000, Angelani
et al 2000, Broderix et al 2000; but see also Doliwa and Heuer (2002), which stresses the
important role of thermal activation above Tc). The main result is illustrated in figure 1,
adapted from Angelani et al (2000). As one lowers the temperature towards Tc, the average
number of saddle points of the energy landscape on which the system finds itself at a given
moment in time decreases. This number extrapolates to zero at Tc. At Tc, one still finds a
finite number of unstable instantaneous normal modes. However, these stem from shoulders
of the potential with a negative curvature rather than from true saddle points. They give
rise to the fast picosecond motion (Angell 1995), but they do not dominate the long-time
dynamics.

Above Tc, the separation of the α-process (the elementary process of the flow) from the
microscopic picosecond motion (Franosch et al 1998) in an undercooled liquid seems to be
reasonably well described by the mode coupling theory. This was demonstrated by neutron
(Knaak et al 1988, Frick et al 1991, Wuttke et al 1993) and light scattering experiments (Li
et al 1992, Sokolov 1998, Wiedersich et al 2000b) on ionic, molecular, and polymeric glass
formers, as well as in a number of numerical simulations (Kob and Andersen 1995a, 1995b,
Nauroth and Kob 1997, Kammerer et al 1998a, 1998b). There are more examples (Götze
1999). One finds the proper scaling relations for the time and temperature dependence of
the α-process and the fast picosecond β-process, consistent with the exponents determined
from the temperature dependence of the viscosity above Tc. As a general rule (Sokolov 1998),
one finds τα(Tc) ≈ 10−7 s, a bit longer than the originally considered value (Goldstein 1968,
Angell 1988) of 10−9 s.

Note that this does not imply a perfect fit of theory and experimental data. Although
one observes the expected power law behaviour of the viscosity in many liquids (Taborek
et al 1986), accurate dielectric data on salol show a temperature dependence of the power law
exponent of τα even well above Tc (Stickel et al 1995). Quantitative checks of the theory are
at present impeded by the difficulty of calculating Tc and the exponents for most real glass
formers.
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Figure 1. Temperature dependences of the fractions of saddle-point modes (squares) and of
instantaneous unstable normal modes (triangles) in two Lennard-Jones glass formers, after Angelani
et al (2000).

Nevertheless, the mode coupling theory is a true microscopic theory, which in principle
allows one to calculate its parameters from a knowledge of the interatomic potentials. The
results obtained so far seem to show that one can identify the critical temperature of this
microscopic theory with the temperature at which the system leaves the saddle points of the
energy landscape to settle in its valleys. Below Tc, one expects a gradual transition to thermally
activated energy landscape dynamics. Although there is no generally agreed description of
this landscape dynamics, there is at least a microscopic theory (Mézard and Parisi 1996, 1999)
for the thermodynamics of the undercooled liquid at this lower temperature.

3. Calculating the Kauzmann temperature

This further important theoretical progress of the last decade concerns an old concept from
the thermodynamics of the glass transition, the Kauzmann temperature. The concept stems
from the experimental observation that the entropy difference between undercooled liquid and
crystal seems to extrapolate to zero at a finite temperature, the Kauzmann temperature TK ,
at which the glass former in principle condenses into a single structural configuration. Since
the viscosity depends on the number of accessible configurations, one expects a divergence
of the viscosity at about the same temperature (an excellent review of the older empirical
attempts to model the thermodynamics and kinetics of the undercooled liquid has been given
by Jäckle (1986)). In this general sense, the Kauzmann temperature is not only important for
the thermodynamics, but also for the dynamics close to Tg . In fact, the empirical Adam–Gibbs
model identifies the temperature TK with the Vogel–Fulcher temperature T0 of the empirical
VFT (Vogel–Fulcher–Tammann) or WLF (Williams–Landel–Ferry (Ferry 1980)) relation

τα = τ0eA/(T −T0), (1)

where τ0 is a microscopic time and A is a second parameter of this empirical relation. If one
looks more closely (Stickel et al 1995, 1996, Hansen et al 1997), the Vogel–Fulcher relation
does not describe the temperature dependence of τα very well. From this data collection, one
rather feels that each glass former behaves differently below Tc. Nevertheless, the general
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Figure 2. An asymmetric double-well potential.

tendency of a divergence of the viscosity as the glass former loses its configurational entropy
cannot be denied.

Mézard and Parisi (1996, 1999) have devised a recipe for calculating the entropy and
the Kauzmann temperature from the pair potentials of a given glass former, thus providing
the Kauzmann extrapolation scheme with a theoretical solidity which it lacked before. The
calculation assumes an undercooled liquid below Tc which spends most of its time vibrating in
a local minimum of the free energy, with only occasional jumps into a neighbouring minimum.
In this situation, one assumes the validity of the harmonic approximation for the motion within
the single well. Using the replica concept, one calculates the free energy as a function of
temperature and finds a nonzero Kauzmann temperature. This is again a microscopic theory,
because it allows one to calculate the heat capacity and the Kauzmann temperature from the
pair potentials between the atoms. Though the Kauzmann temperature itself might still prove
to be an artefact of the mean-field approximation of the calculation, the calculated heat capacity
above this temperature resembles measured data above Tg both in shape and size.

The next section proceeds to a phenomenological model of the thermally activated energy
landscape dynamics in the low-temperature glass phase.

4. ADWP or Gilroy–Phillips model

The ADWP (Pollak and Pike 1972) or Gilroy–Phillips model (Gilroy and Phillips 1981) is
a member of a family of three glass models, which are essentially one and the same model
applied to three different situations (the other two are the tunnelling model (Phillips 1981) and
the soft-potential model (Parshin 1994)). The basic idea is to simplify the multiminimum
situation of the energy landscape to an ensemble of independent double-well potentials
for local structural rearrangements with a broad distribution of different barrier heights V
and asymmetries � between the two minima (see figure 2)—an inherently heterogeneous
description of the dynamics of the glass phase (for a review on the heterogeneity of undercooled
liquids see Richert 2002).

Consider a single relaxing entity, i.e. a single barrier of height V separating two
neighbouring energy minima. Figure 2 shows schematically the energy as a function of the
configurational coordinate going from one minimum to the other. In numerical simulations of
model glasses, one finds that this configurational coordinate involves the motion of about 5–50
atoms in the centre of the relaxing entity (Heuer and Silbey 1996, Schober and Oligschleger
1996). There is no reason that the two minima should have the same energy, so there will be
an energy difference � between them. A further characteristic of the two adjacent minima is
the coupling of this relaxing entity to the external shear strain ε. This is given by the coupling
constant γ , defined such that the asymmetry changes from � to �+γ ε under the applied shear
strain ε.
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With these three energies, the barrier height V , the asymmetry �, and the coupling constant
γ , one can quantify the contribution of this single relaxing entity to the dynamical mechanical
behaviour of the viscoelastic medium. The relaxation time τV is given by the Arrhenius relation

τV = τ0eV/kB T , (2)

where τ0 is a microscopic time of the order of 10−13 s, V is the energy of the barrier between
two energy minima of the system, and T is the temperature.

In the simplest possible approximation, the free energy F of the single relaxation centre
reads

F = −kB T ln

[
2 cosh

(
� + γ ε

2kB T

)]
. (3)

Its second derivative with respect to the shear distortion ε is
∂2 F

∂ε2
= − γ 2

4kB T cosh2(�/2kBT )
. (4)

The second derivative determines the contribution of the specific relaxing entity to the
difference between the shear moduli at infinite and zero frequency. The main influence on the
shear modulus is due to relaxation in potentials with asymmetries smaller than kB T ; for larger
asymmetries the influence decreases rapidly because of the square of the hyperbolic cosine in
the denominator.

We assume a number density function n(V ,�) of these local structural relaxations, which
varies little if V or � change by energies of the order kB T . Integrating over the asymmetry
(Buchenau 2001), we obtain a net difference δG between the infinite- and the zero-frequency
shear moduli due to relaxations with barrier heights between V and V + δV :

δG

G δV
= γ 2n(V , 0)

G
≡ f0(V ), (5)

where G is the infinite-frequency shear modulus. This relation defines f0(V ), the barrier
density function without interaction.

In the frozen glass phase, one expects a frozen-in distribution of barrier heights and
asymmetries and thus a temperature-independent f0(V ). One can check that by looking at the
distribution with low and high frequencies; according to the Arrhenius relation, equation (2),
one should be able to observe the same barrier height at different temperatures. Such checks
have been done for a number of different glass formers. As long as one stays at temperatures
much lower than the glass temperature, one finds impressive agreement with the idea of a
temperature-independent barrier density function. One example is provided by vitreous silica
up to 300 K, glass temperature 1473 K (Wiedersich et al 2000a). Another one is provided
by polymethyl methacrylate (PMMA) below 80 K, glass temperature 383 K (Buchenau et al
2002). For higher temperatures, however, the barrier density function tends to increase with
increasing temperature (Surovtsev et al 1998, Caliskan et al 2002).

As will be shown in the next section, one has to expect such an increase, because
the interaction between different relaxation centres determines the dynamics close to the
breakdown of the shear modulus. In this view, the Johari–Goldstein β-process, a broad
relaxation maximum close to the α-process which shows an Arrhenius behaviour both below
and above Tg (Johari and Goldstein 1970, 1971, Kudlik et al 1999), corresponds to a peak in
f0(V ), strongly enhanced by the proximity of the breakdown.

5. The 1/3 rule

For the purpose of this and the following section, let us assume that the decomposition of
the complex energy landscape into an ensemble of single relaxation centres or single relaxing
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entities is a reasonable and solid basis. In a mean-field scheme, the interaction between the
single entity and all the others is taken into account by embedding the single centre into the
viscoelastic medium, calculating the viscoelastic properties self-consistently.

The first implication of this mean-field assumption is that the asymmetry � is no longer
fixed, but changes on the Maxwell timescale, because the viscoelastic medium is free to flow.
Consequently, the term γ ε in equation (3) can adapt on the Maxwell timescale, thus changing
� to a different value. The Maxwell time τM is given by the shear viscosity η and the infinite-
frequency shear modulus G:

τM = η/G, (6)

where all three quantities depend on temperature, the infinite-frequency shear modulus G only
weakly, but the two other quantities drastically.

A change in � does not mean that the energy landscape itself flows; to take a three-
dimensional example, the barrier is like a ridge between two sloping valleys with different
slopes; going along the ridge changes the height difference of the two valleys. In this example,
the coordinate along the ridge could correspond to the external shear strain; then one has a
continuous change of �. It could also correspond to the configurational coordinate of another
relaxing entity in the neighbourhood, which changes the local shear strain at the given relaxation
centre in a discontinuous way.

It is interesting to consider the consequences of a freely changing value of �. Taking
equation (3) literally, one calculates a Boltzmann factor of the relaxing entity

exp(−F/kB T ) = 2 cosh(�/2kB T ), (7)

which has its lowest value at the symmetric case, � = 0, and diverges with increasing �. This
latter feature is of course unphysical, because one cannot expect to gain energy without limit
by increasing the asymmetry of such a local entity. However, the consideration shows that
one must expect a relatively low probability for the symmetric case, because it is energetically
unfavourable. In fact, both the number of tunnelling states and the excess entropy of the frozen
glass seem to decrease in selenium upon ageing (Johari 1986).

As soon as � is able to change, the relaxing entity has an additional possible way to
find its thermal equilibrium, namely by lowering the energy of the minimum in which the
system happens to find itself. It is therefore natural to assume that relaxation centres with high
barriers, whose relaxation time exceeds the Maxwell time, do not contribute to the viscoelastic
properties of the medium, while those with shorter relaxation times have time to equilibrate
by jumps over the barrier and do contribute. The two barrier regimes are separated by the
Maxwell barrier VM with

VM = kB T ln(τM/τ0). (8)

Consider the energetics of an individual double well, with a barrier low enough to
equilibrate within the Maxwell time. Suppose a small constant shear strain ε is switched
on at time zero, with the population of the minima of the double well in thermal equilibrium
with respect to zero shear strain. The new thermal equilibrium requires a number of jumps

δn = γ ε

4kB T cosh2(�/2kBT )
. (9)

In order to calculate the energy δU carried to the heat bath, we have to multiply the number
of jumps δn by the energy difference � + γ ε. Therefore these jumps transport the energy

δU = �γε + γ 2ε2

4kB T cosh2(�/2kBT )
(10)
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from the macroscopic shear stress energy to the heat bath. The term on the right-hand side
linear in ε must be compensated by other relaxing entities with opposite sign of � (otherwise
there would be no initial equilibrium). If one compares the second quadratic term δU2 with
the second derivative of the free energy in equation (4), one finds that it is twice as high as the
free energy decrease δF calculated from equation (4):

δF = γ 2ε2

8kB T cosh2(�/2kBT )
= 1

2
δU2, (11)

which determines the reduction of the shear modulus by the barrier. The physical reason for
this is the reduced entropy; spending the energy, one has spanned an entropic spring. Thus
the reduction of the shear modulus is only half that expected from the spent energy. This is in
principle textbook knowledge for a Debye relaxation, but is explained here again, because it
is essential for the understanding of the glass transition.

In a Gedankenexperiment, let the thermally equilibrated relaxation centre return from the
actual asymmetry � + γ ε in the strained state to its original asymmetry �, say by appropriate
jumps in the surroundings which change the local strain at the centre. In principle, this
return would again require the energy δU , to be taken again from the macroscopic stress
energy. However, this return occurs on the Maxwell timescale, which is long compared to the
relaxation time of the relaxation centre. Therefore the population of its two minima adapts
adiabatically. The number of back-jumps is again the same δn, but now the asymmetry reduces
gradually from � + γ ε to � in the course of the process, reducing the average energy per jump
to � + γ ε/2. This means that one needs only the energy δU2 − δF = δF to return.

Now imagine this happens for all relaxation centres with barriers lower than the Maxwell
barrier of equation (8) in the undercooled liquid. Then one returns to an unstrained equilibrium
in the strained state. This means a full relaxation of the initial stress, as in the true flow process
characterized by the Maxwell time. Naturally, our Gedankenexperiment is a rather improbable
realization of this process,because in the real process a given relaxation centre will almost never
return to its initial asymmetry, though the macroscopic stress relaxes back to zero. However,
this special realization allows us to keep track of the energy contributions.

In this cycle from the initial equilibrium to a new equilibrium in the strained state, each
barrier with τV smaller than τM takes the energy 3 δF from the stress energy, 2 δF in the initial
equilibration and δF on the Maxwell timescale. The direct reduction of the shear modulus, the
one to be expected if there were no interaction between different barriers, corresponds only to
a single δF . The energy 3 δF is taken from the potential energy in the strain field, reducing it
to zero. One arrives at the conclusion that the stress relaxation occurs when the noninteracting
relaxation centres reduce the shear modulus by one third of its infinite-frequency value. To
put it differently, the interaction between relaxing entities reduces the number needed to bring
the long-time shear modulus down to zero by a factor of three.

In terms of the barrier density function f0(V ), this means∫ VM

0
f0(V ) dV = 1

3 . (12)

This is the 1/3 rule, which allows one to calculate the Maxwell barrier (and from the
Maxwell barrier, the shear viscosity) for a given barrier density function f0(V ). The barrier
density function f0(V ) in turn can be determined from measurements at times shorter than
the Maxwell time. To do this, one needs a quantitative treatment of the interaction between
different relaxation centres, which is the topic of the next section.

The 1/3 rule provides a qualitative understanding of the fragility: as the temperature
increases, f0(V ) is expected to increase, because symmetric double-well potentials are
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energetically unfavourable, as pointed out at the beginning of this section. This implies that VM

decreases with increasing temperature, as one indeed observes in experiment. The problem is
to make this understanding quantitative. One could hope to use the theoretical tools of Mézard
and Parisi (1996, 1999) to achieve this end.

6. The breakdown of the shear modulus

The 1/3 rule, equation (12), can be derived independently (Buchenau 2002) from the
assumption

δG

G δV
= f0(V )

G2

G(τV )2
e−τV /τM ≡ f (V ). (13)

Equation (13) is a generalization of the definition of the barrier density function
f0(V ) without interaction, equation (5), to describe the enhancement of the effect of a single
relaxation centre by the interaction, together with the cut-off at the Maxwell time. The equation
defines a barrier density function f (V ) with interaction, which can then be used to calculate
the full shear response.

One can justify the quadratic enhancement factor assuming a constant strain applied at
time zero. The relaxation will tend to equilibrate at the time τV , when the square of the
stress—a measure of the remaining stress energy—is reduced by precisely this factor, while the
number of jumps required for the equilibration may be taken to be unchanged. If the number
of jumps and the distortion remain unchanged, the energy and the free energy contribution
remain unchanged. This implies that the reduction of the stress energy by the relaxation is also
unchanged. This in turn increases the apparent barrier density function f (V ) by the square
of G/G(τV ). A physical interpretation of this increase is lower-barrier jumps, taking place in
the neighbourhood after a jump of the central entity.

One can carry out a self-consistent calculation of f (V ) for a given f0(V ) by inserting the
expression for G(τV ) in terms of f (V ) into equation (13). This leads to an integral equation
for f (V ) with the approximate solution (Buchenau 2002)

f (V ) = f0(V ) exp(−τV /τM )

[3
∫ ∞

0 exp(−τV /τv) exp(−τV /τM ) f0(v) dv]2/3
, (14)

where the Maxwell time is again given by the 1/3 rule, equation (12).
The denominator of equation (14) tends toward zero as V approaches the Maxwell barrier.

Therefore the breakdown of the shear modulus occurs in a rather dramatic way. The relaxing
entities at this critical barrier value receive a strong enhancement, to such an extent that one is
tempted to assume a separate α-process which has nothing to do with the secondary relaxations.
In fact, this more or less unconscious assumption underlies most of the present attempts to
understand the glass transition (Ediger et al 1996). The above mean-field treatment shows such
an assumption to be unnecessary; what one sees at the glass transition are simple Arrhenius
relaxations of no particularly large number density, blown up to impressive size by the small
denominator of equation (14).

Once f (V ) is known, one can determine the frequency dependence of the complex shear
modulus at the frequency ω from the two relations

G ′(ω) = G
∫ ∞

0
f (V )

ω2τ 2
V dV

1 + ω2τ 2
V

(15)

and

G ′′(ω) = G
∫ ∞

0
f (V )

ωτV dV

1 + ω2τ 2
V

. (16)
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Figure 3. The shape of the normalized α-peak in G ′′(ω) in a log–log plot for two polymers
(Donth et al 1996) and the two molecular glass formers dibutylphthalate (Behrens et al 1996) and
2-methyl-2, 4-pentanediol (Christensen and Olsen 1995). The continuous line shows the model,
the dashed line the adapted model (see the text).

(This figure is in colour only in the electronic version)

One must expect f0(V ) and, consequently, f (V ) to be a different function for each glass
former. In many of the cases,however, one should be able to approximate f 0(V ) by the constant
value f0(VM ) for barriers close to VM . Such a choice is also suggested by the appearance of a
constant loss term (Kudlik et al 1999, Ngai 2000, Sokolov et al 2001) in many glass formers
just below Tg . A constant loss term corresponds to a constant f (V ). In the model with
a barrier-independent f0(V ), f (V ) decreases and approaches f0(V ) as one goes from the
Maxwell barrier to lower barriers. For this generic case, one can calculate G ′ and G ′′ at the
breakdown of the shear modulus and compare the result to measured data.

There are some good mechanical shear measurements over many decades in frequency at
Tg (Christensen and Olsen 1994, 1995, Behrens et al 1996, Donth et al 1996). Figure 3 shows
data for G ′′(ω), normalized to the peak maximum. The continuous line is calculated from the
model assuming f0(V ) = constant and using equations (14) and (16). As can be seen from
figure 3, the fit is only good for the two polymers polystyrene and poly(vinyl acetate); the two
molecular glass formers show a much stronger decay of G ′′ towards the high-frequency end.
For these, the model gives a peak in the imaginary part of the shear modulus which is too small
and too broad; the real breakdown of the shear modulus is more dramatic than the mean-field
calculation. A better fit requires an increase of f0(V ) at the Maxwell barrier (the dashed curve
in figure 3). One can rationalize this increase; it might be necessary to reach a large peak in
f0(V ) before the shear modulus breaks down.

Dielectric measurements (Kudlik et al 1999) provide much more accurate peak shapes
than mechanical ones. However, these data are usually presented as real and imaginary parts
of the dielectric constant, which is essentially a susceptibility. The model discussed here
calculates moduli. These should be identical to the dielectric ones as long as the weighting
of the relaxation centres according to the electric dipole moments corresponds to that of the
mechanical shear coupling constants. A comparison requires a conversion of the dielectric
constants to dielectric moduli (Dyre 1991), which changes the peak shape considerably.
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Christensen and Olsen (1994) show three examples where dielectric moduli data give exactly
the same peak shape as mechanical shear modulus data.

7. Conclusions

There begins to be a general agreement that the mode coupling theory of the glass transition
(Götze and Sjögren 1992) is the proper microscopic theory for the separation of the structural
relaxation time from the microscopic picosecond timescale in undercooled liquids. However,
the structural relaxation time of real liquids does not diverge at the critical temperature Tc of
the theory. It rather reaches a typical value between a nanosecond and a microsecond (Sokolov
1998), indicating a crossover to a different flow mechanism.

Numerical simulations (Schrøder et al 2000, Angelani et al 2000, Broderix et al 2000;
but see also Doliwa and Heuer 2002) corroborate the old conjecture (Bengtzelius et al 1984,
Angell 1988) that at Tc the system leaves the saddle points of the energy landscape to settle in
the valleys.

At still lower temperatures, one can use the approximation of harmonic energy minima,
with only occasional thermally activated jumps in between. This is the starting point of a second
microscopic theory (Mézard and Parisi 1996, 1999) for the entropy of the undercooled liquid,
which allows one to calculate the puzzling heat capacity at the calorimetric glass transition
from the interatomic potentials. These two theories provide some microscopic insight (though
one could wish for theories which are easier to handle).

The breakdown of the shear modulus at the calorimetric glass transition has as yet no
microscopic explanation. One can show that it cannot be treated in terms of independent
double-well relaxation centres (Pollak and Pike 1972, Gilroy and Phillips 1981), because the
interaction becomes dominant at this breakdown, reducing the number of relaxation centres
needed for the breakdown by a factor of three (the 1/3 rule). A mean-field treatment (Buchenau
2002) of the interaction allows one to calculate the shear response at the breakdown. The
comparison to measured data shows agreement in some glass formers, but a more pronounced
breakdown in others. One can rationalize this finding by postulating a rise of the barrier density
function f0(V ) at the Maxwell barrier for the latter.

A disappointing feature of the relaxation centre picture is that one needs a whole
temperature-dependent function, the barrier density function f0(V ), to describe the dynamics
around Tg . It is not enough to classify glass formers as type A or B (Kudlik et al 1999),
depending on whether f0(V ) shows a strong peak (Johari–Goldstein peak) below VM or not.
On the other hand, this is a logical consequence of the validity of the energy landscape idea,
because the energy landscape is different in different glass formers. If all relaxation centres up
to the Maxwell barrier contribute to the flow process, then the description of its temperature
and frequency dependence cannot be done with a single parameter. Below Tc, each glass
former develops its own identity, a conclusion supported by experiment (Stickel et al 1995,
1996, Hansen et al 1997).
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